Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2307220121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621138

RESUMO

The expansion of the oil palm industry in Indonesia has improved livelihoods in rural communities, but comes at the cost of biodiversity and ecosystem degradation. Here, we investigated ways to balance ecological and economic outcomes of oil palm cultivation. We compared a wide range of production systems, including smallholder plantations, industrialized company estates, estates with improved agronomic management, and estates with native tree enrichment. Across all management types, we assessed multiple indicators of biodiversity, ecosystem functions, management, and landscape structure to identify factors that facilitate economic-ecological win-wins, using palm yields as measure of economic performance. Although, we found that yields in industrialized estates were, on average, twice as high as those in smallholder plantations, ecological indicators displayed substantial variability across systems, regardless of yield variations, highlighting potential for economic-ecological win-wins. Reducing management intensity (e.g., mechanical weeding instead of herbicide application) did not lower yields but improved ecological outcomes at moderate costs, making it a potential measure for balancing economic and ecological demands. Additionally, maintaining forest cover in the landscape generally enhanced local biodiversity and ecosystem functioning within plantations. Enriching plantations with native trees is also a promising strategy to increase ecological value without reducing productivity. Overall, we recommend closing yield gaps in smallholder cultivation through careful intensification, whereas conventional plantations could reduce management intensity without sacrificing yield. Our study highlights various pathways to reconcile the economics and ecology of palm oil production and identifies management practices for a more sustainable future of oil palm cultivation.


Assuntos
Arecaceae , Óleos Industriais , Ecossistema , Florestas , Biodiversidade , Agricultura , Árvores , Óleo de Palmeira , Conservação dos Recursos Naturais
2.
Science ; 384(6691): 87-93, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574149

RESUMO

Agricultural simplification continues to expand at the expense of more diverse forms of agriculture. This simplification, for example, in the form of intensively managed monocultures, poses a risk to keeping the world within safe and just Earth system boundaries. Here, we estimated how agricultural diversification simultaneously affects social and environmental outcomes. Drawing from 24 studies in 11 countries across 2655 farms, we show how five diversification strategies focusing on livestock, crops, soils, noncrop plantings, and water conservation benefit social (e.g., human well-being, yields, and food security) and environmental (e.g., biodiversity, ecosystem services, and reduced environmental externalities) outcomes. We found that applying multiple diversification strategies creates more positive outcomes than individual management strategies alone. To realize these benefits, well-designed policies are needed to incentivize the adoption of multiple diversification strategies in unison.


Assuntos
Agricultura , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Humanos , Fazendas , Solo
3.
Nature ; 627(8002): 116-122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355803

RESUMO

Terrestrial animal biodiversity is increasingly being lost because of land-use change1,2. However, functional and energetic consequences aboveground and belowground and across trophic levels in megadiverse tropical ecosystems remain largely unknown. To fill this gap, we assessed changes in energy fluxes across 'green' aboveground (canopy arthropods and birds) and 'brown' belowground (soil arthropods and earthworms) animal food webs in tropical rainforests and plantations in Sumatra, Indonesia. Our results showed that most of the energy in rainforests is channelled to the belowground animal food web. Oil palm and rubber plantations had similar or, in the case of rubber agroforest, higher total animal energy fluxes compared to rainforest but the key energetic nodes were distinctly different: in rainforest more than 90% of the total animal energy flux was channelled by arthropods in soil and canopy, whereas in plantations more than 50% of the energy was allocated to annelids (earthworms). Land-use change led to a consistent decline in multitrophic energy flux aboveground, whereas belowground food webs responded with reduced energy flux to higher trophic levels, down to -90%, and with shifts from slow (fungal) to fast (bacterial) energy channels and from faeces production towards consumption of soil organic matter. This coincides with previously reported soil carbon stock depletion3. Here we show that well-documented animal biodiversity declines with tropical land-use change4-6 are associated with vast energetic and functional restructuring in food webs across aboveground and belowground ecosystem compartments.


Assuntos
Biodiversidade , Metabolismo Energético , Cadeia Alimentar , Floresta Úmida , Animais , Artrópodes/metabolismo , Bactérias/metabolismo , Aves/metabolismo , Sequestro de Carbono , Fezes , Fungos/metabolismo , Indonésia , Oligoquetos/metabolismo , Compostos Orgânicos/metabolismo , Óleo de Palmeira , Borracha , Solo/química , Clima Tropical
4.
PeerJ ; 11: e16462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025750

RESUMO

Passive acoustic monitoring technology is widely used to monitor the diversity of vocal animals, but the question of how to quickly extract effective sound patterns remains a challenge due to the difficulty of distinguishing biological sounds within multiple sound sources in a soundscape. In this study, we address the potential application of the VGGish model, pre-trained on Google's AudioSet dataset, for the extraction of acoustic features, together with an unsupervised clustering method based on the Gaussian mixture model, to identify various sound sources from a soundscape of a subtropical forest in China. The results show that different biotic and abiotic components can be distinguished from various confounding sound sources. Birds and insects were the two primary biophony sound sources, and their sounds displayed distinct temporal patterns across both diurnal and monthly time frames and distinct spatial patterns in the landscape. Using the clustering and modeling method of the general sound feature set, we quickly depicted the soundscape in a subtropical forest ecosystem, which could be used to track dynamic changes in the acoustic environment and provide help for biodiversity and ecological environment monitoring.


Assuntos
Ecossistema , Som , Animais , Florestas , Acústica , China
5.
Nature ; 618(7964): 316-321, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225981

RESUMO

In the United Nations Decade on Ecosystem Restoration1, large knowledge gaps persist on how to increase biodiversity and ecosystem functioning in cash crop-dominated tropical landscapes2. Here, we present findings from a large-scale, 5-year ecosystem restoration experiment in an oil palm landscape enriched with 52 tree islands, encompassing assessments of ten indicators of biodiversity and 19 indicators of ecosystem functioning. Overall, indicators of biodiversity and ecosystem functioning, as well as multidiversity and ecosystem multifunctionality, were higher in tree islands compared to conventionally managed oil palm. Larger tree islands led to larger gains in multidiversity through changes in vegetation structure. Furthermore, tree enrichment did not decrease landscape-scale oil palm yield. Our results demonstrate that enriching oil palm-dominated landscapes with tree islands is a promising ecological restoration strategy, yet should not replace the protection of remaining forests.


Assuntos
Biodiversidade , Produtos Agrícolas , Recuperação e Remediação Ambiental , Óleo de Palmeira , Árvores , Florestas , Óleo de Palmeira/provisão & distribuição , Árvores/fisiologia , Agricultura/métodos , Nações Unidas , Clima Tropical , Produtos Agrícolas/provisão & distribuição , Recuperação e Remediação Ambiental/métodos
6.
Ecol Evol ; 11(23): 17179-17190, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938501

RESUMO

Emerging technologies based on the detection of electro-magnetic energy offer promising opportunities for sampling biodiversity. We exploit their potential by showing here how they can be used in bat point counts-a novel method to sample flying bats-to overcome shortcomings of traditional sampling methods, and to maximize sampling coverage and taxonomic resolution of this elusive taxon with minimal sampling bias. We conducted bat point counts with a sampling rig combining a thermal scope to detect bats, an ultrasound recorder to obtain echolocation calls, and a near-infrared camera to capture bat morphology. We identified bats with a dedicated identification key combining acoustic and morphological features, and compared bat point counts with the standard bat sampling methods of mist-netting and automated ultrasound recording in three oil palm plantation sites in Indonesia, over nine survey nights. Based on rarefaction and extrapolation sampling curves, bat point counts were similarly effective but more time-efficient than the established methods for sampling the oil palm species pool in our study. Point counts sampled species that tend to avoid nets and those that are not echolocating, and thus cannot be detected acoustically. We identified some bat sonotypes with near-infrared imagery, and bat point counts revealed strong sampling biases in previous studies using capture-based methods, suggesting similar biases in other regions might exist. Our method should be tested in a wider range of habitats and regions to assess its performance. However, while capture-based methods allow to identify bats with absolute and internal morphometry, and unattended ultrasound recorders can effectively sample echolocating bats, bat point counts are a promising, non-invasive, and potentially competitive new tool for sampling all flying bats without bias and observing their behavior in the wild.

7.
F1000Res ; 10: 189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35436082

RESUMO

Bat communities can usually only be comprehensively monitored by combining ultrasound recording and trapping techniques. Here, we propose bat point counts, a novel, single method to sample all flying bats. We designed a sampling rig that combines a thermal scope to detect flying bats and their flight patterns, an ultrasound recorder to identify echolocating bat calls, and a near-infrared camera and LED illuminator to photograph bat morphology. We evaluated the usefulness of the flight pattern information, echolocation call recordings, and near-infrared photographs produced by our sampling rig to determine a workflow to process these heterogenous data types. We present a conservative workflow to enable taxonomic discrimination and identification of bat detections. Our sampling rig and workflow allowed us to detect both echolocating and non-echolocating bats and we could assign 84% of the detections to a guild. Subsequent identification can be carried out with established methods such as identification keys and call libraries, based on the visible morphological features and echolocation calls. Currently, a higher near-infrared picture quality is required to resolve more detailed diagnostic morphology, but there is considerable potential to extract more information with higher-intensity illumination. This is the first proof-of-concept for bat point counts, a method that can passively sample all flying bats in their natural environment.


Assuntos
Quirópteros , Ecolocação , Animais , Voo Animal , Ultrassonografia , Fluxo de Trabalho
8.
PeerJ ; 8: e9955, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33150056

RESUMO

BACKGROUND: Automated sound recorders are a popular sampling tool in ecology. However, the microphones themselves received little attention so far, and specifications that determine the recordings' sound quality are seldom mentioned. Here, we demonstrate the importance of microphone signal-to-noise ratio for sampling sonant animals. METHODS: We tested 12 different microphone models in the field and measured their signal-to-noise ratios and detection ranges. We also measured the vocalisation activity of birds and bats that they recorded, the bird species richness, the bat call types richness, as well as the performance of automated detection of bird and bat calls. We tested the relationship of each one of these measures with signal-to-noise ratio in statistical models. RESULTS: Microphone signal-to-noise ratio positively affects the sound detection space areas, which increased by a factor of 1.7 for audible sound, and 10 for ultrasound, from the lowest to the highest signal-to-noise ratio microphone. Consequently, the sampled vocalisation activity increased by a factor of 1.6 for birds, and 9.7 for bats. Correspondingly, the species pool of birds and bats could not be completely detected by the microphones with lower signal-to-noise ratio. The performance of automated detection of bird and bat calls, as measured by its precision and recall, increased significantly with microphone signal-to-noise ratio. DISCUSSION: Microphone signal-to-noise ratio is a crucial characteristic of a sound recording system, positively affecting the acoustic sampling performance of birds and bats. It should be maximised by choosing appropriate microphones, and be quantified independently, especially in the ultrasound range.

9.
Nat Commun ; 11(1): 1186, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132531

RESUMO

Land-use transitions can enhance the livelihoods of smallholder farmers but potential economic-ecological trade-offs remain poorly understood. Here, we present an interdisciplinary study of the environmental, social and economic consequences of land-use transitions in a tropical smallholder landscape on Sumatra, Indonesia. We find widespread biodiversity-profit trade-offs resulting from land-use transitions from forest and agroforestry systems to rubber and oil palm monocultures, for 26,894 aboveground and belowground species and whole-ecosystem multidiversity. Despite variation between ecosystem functions, profit gains come at the expense of ecosystem multifunctionality, indicating far-reaching ecosystem deterioration. We identify landscape compositions that can mitigate trade-offs under optimal land-use allocation but also show that intensive monocultures always lead to higher profits. These findings suggest that, to reduce losses in biodiversity and ecosystem functioning, changes in economic incentive structures through well-designed policies are urgently needed.

10.
F1000Res ; 9: 1224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33274051

RESUMO

Passive acoustic monitoring of soundscapes and biodiversity produces vast amounts of audio recordings, but the management and analyses of these raw data present technical challenges. A multitude of software solutions exist, but none can fulfil all purposes required for the management, processing, navigation, analysis, and dissemination of acoustic data. The field of ecoacoustics needs a software tool that is free, evolving, and accessible. We take a step in that direction and present ecoSound-web: an open-source, online platform for ecoacoustics designed and built by ecologists and software engineers. ecoSound-web can be used for storing, organising, and sharing soundscape projects, manually creating and peer-reviewing annotations of soniferous animals and phonies, analysing audio in time and frequency, computing alpha acoustic indices, and providing reference sound libraries for different taxa. We present ecoSound-web's features, structure, and compare it with similar software. We describe its operation mode and the workflow for typical use cases such as the sampling of bird and bat communities, the use of a primate call library, and the analysis of phonies and acoustic indices. ecoSound-web is available from: https://github.com/ecomontec/ecoSound-web.

11.
Ecol Appl ; 29(6): e01954, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31206926

RESUMO

Autonomous sound recording techniques have gained considerable traction in the last decade, but the question remains whether they can replace human observation surveys to sample sonant animals. For birds in particular, survey methods have been tested extensively using point counts and sound recording surveys. Here, we review the latest evidence for this taxon within the frame of a systematic map. We compare sampling effectiveness of these two survey methods, the output variables they produce, and their practicality. When assessed against the standard of point counts, autonomous sound recording proves to be a powerful tool that samples at least as many species. This technology can monitor birds in an exhaustive, standardized, and verifiable way. Moreover, sound recorders give access to entire soundscapes from which new data types can be derived (vocal activity, acoustic indices). Variables such as abundance, density, occupancy, or species richness can be obtained to yield data sets that are comparable to and compatible with point counts. Finally, autonomous sound recorders allow investigations at high temporal and spatial resolution and coverage, which are more cost effective and cannot be achieved by human observations alone, even though small-scale studies might be more cost effective when carried out with point counts. Sound recorders can be deployed in many places, they are more scalable and reliable, making them the better choice for bird surveys in an increasingly data-driven time. We provide an overview of currently available recorders and discuss their specifications to guide future study designs.


Assuntos
Acústica , Vocalização Animal , Animais , Aves , Humanos , Som , Espectrografia do Som
12.
J Wildl Dis ; 55(2): 509-511, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30226802

RESUMO

We report knemidokoptiasis in a wild male Little Spiderhunter ( Arachnothera longirostra cinereicollis; family Nectariniidae; order Passeriformes) from Jambi, Sumatra, Indonesia, in September 2017. Microscopic examination of a scraping from its leg lesion revealed the presence of Knemidocoptes jamaicensis as the cause of the condition.


Assuntos
Animais Selvagens , Doenças das Aves/parasitologia , Infestações por Ácaros/veterinária , Ácaros/classificação , Passeriformes/parasitologia , Animais , Doenças das Aves/epidemiologia , Indonésia/epidemiologia , Masculino , Infestações por Ácaros/epidemiologia , Infestações por Ácaros/parasitologia
13.
F1000Res ; 7: 229, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30079238

RESUMO

Background: Tropical lowland rainforests are threatened by deforestation and degradation worldwide. Relatively little research has investigated the degradation of the forests of South-east Asia and its impact on biodiversity, and even less research has focused on the important peat swamp forests of Indonesia, which experienced major losses through severe fires in 2015. Methods: We acoustically sampled the avifauna of the Berbak National Park in 2013 in 12 sites split in three habitats: primary swamp forest, secondary swamp forest, and shrub swamp, respectively representing non-degraded, previously selectively logged, and burned habitats. We analysed the species richness, abundance, vocalisation activity, and community composition across acoustic counts, sites, feeding guilds and IUCN Red List categories. We also analysed community-weighted means of body mass, wing length, and distribution area. Results: The avifauna in the three habitats was remarkably similar in richness, abundance and vocalisation activity, and communities mainly differed due to a lower prevalence of understory insectivores (Old-World Babblers, Timaliidae) in shrub swamp. However primary forest retained twice as many conservation-worthy species as shrub swamp, which harboured heavier, probably more mobile species, with larger distributions than those of forest habitats. Conclusions: The National Park overall harboured higher bird abundances than nearby lowland rainforests. Protecting the remaining peat swamp forest in this little-known National Park should be a high conservation priority in the light of the current threats coming from wildlife trade, illegal logging, land use conversion, and man-made fires.

14.
F1000Res ; 7: 1984, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687500

RESUMO

Passive acoustic monitoring of wildlife requires sound recording systems. Several cheap, high-performance, or open-source solutions currently exist for recording soundscapes, but all rely on commercial microphones. Commercial microphones are relatively expensive, specialized for particular taxa, and often have incomplete technical specifications. We designed Sonitor, an open-source microphone system to address all needs of ecologists that sample terrestrial wildlife acoustically. We evaluated the cost and durability of our system and measured trade-offs that are seldom acknowledged but which universally limit microphones' functions: weatherproofing versus sound attenuation, windproofing versus transmission loss after rain, signal loss in long cables, and analog sound amplification versus directivity with acoustic horns. We propose five microphone configurations suiting different budgets (from 8 to 33 EUR per unit), and fulfilling different sound quality and flexibility requirements. The Sonitor system consists of sturdy acoustic sensors that cover the entire sound frequency spectrum of sonant terrestrial wildlife at a fraction of the cost of commercial microphones.

15.
Nat Ecol Evol ; 1(10): 1511-1519, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29185508

RESUMO

The conversion of tropical rainforest to agricultural systems such as oil palm alters biodiversity across a large range of interacting taxa and trophic levels. Yet, it remains unclear how direct and cascading effects of land-use change simultaneously drive ecological shifts. Combining data from a multi-taxon research initiative in Sumatra, Indonesia, we show that direct and cascading land-use effects alter biomass and species richness of taxa across trophic levels ranging from microorganisms to birds. Tropical land use resulted in increases in biomass and species richness via bottom-up cascading effects, but reductions via direct effects. When considering direct and cascading effects together, land use was found to reduce biomass and species richness, with increasing magnitude at higher trophic levels. Our analyses disentangle the multifaceted effects of land-use change on tropical ecosystems, revealing that biotic interactions on broad taxonomic scales influence the ecological outcome of anthropogenic perturbations to natural ecosystems.


Assuntos
Agricultura , Biodiversidade , Conservação dos Recursos Naturais , Floresta Úmida , Indonésia
16.
Ecology ; 98(7): 1945-1956, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28464275

RESUMO

One of the world's most important and rapidly expanding crops, oil palm, is associated with low levels of biodiversity. Changes in predator communities might alter ecosystem services and subsequently sustainable management but these links have received little attention to date. Here, for the first time, we manipulated ant and flying vertebrate (birds and bats) access to oil palms in six smallholder plantations in Sumatra (Indonesia) and measured effects on arthropod communities, related ecosystem functions (herbivory, predation, decomposition and pollination) and crop yield. Arthropod predators increased in response to reductions in ant and bird access, but the overall effect of experimental manipulations on ecosystem functions was minimal. Similarly, effects on yield were not significant. We conclude that ecosystem functions and productivity in oil palm are, under current levels of low pest pressure and large pollinator populations, robust to large reductions of major predators.


Assuntos
Formigas/fisiologia , Arecaceae/crescimento & desenvolvimento , Aves/fisiologia , Quirópteros/fisiologia , Ecossistema , Animais , Comportamento Predatório
17.
Biol Rev Camb Philos Soc ; 92(3): 1539-1569, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27511961

RESUMO

Oil palm plantations have expanded rapidly in recent decades. This large-scale land-use change has had great ecological, economic, and social impacts on both the areas converted to oil palm and their surroundings. However, research on the impacts of oil palm cultivation is scattered and patchy, and no clear overview exists. We address this gap through a systematic and comprehensive literature review of all ecosystem functions in oil palm plantations, including several (genetic, medicinal and ornamental resources, information functions) not included in previous systematic reviews. We compare ecosystem functions in oil palm plantations to those in forests, as the conversion of forest to oil palm is prevalent in the tropics. We find that oil palm plantations generally have reduced ecosystem functioning compared to forests: 11 out of 14 ecosystem functions show a net decrease in level of function. Some functions show decreases with potentially irreversible global impacts (e.g. reductions in gas and climate regulation, habitat and nursery functions, genetic resources, medicinal resources, and information functions). The most serious impacts occur when forest is cleared to establish new plantations, and immediately afterwards, especially on peat soils. To variable degrees, specific plantation management measures can prevent or reduce losses of some ecosystem functions (e.g. avoid illegal land clearing via fire, avoid draining of peat, use of integrated pest management, use of cover crops, mulch, and compost) and we highlight synergistic mitigation measures that can improve multiple ecosystem functions simultaneously. The only ecosystem function which increases in oil palm plantations is, unsurprisingly, the production of marketable goods. Our review highlights numerous research gaps. In particular, there are significant gaps with respect to socio-cultural information functions. Further, there is a need for more empirical data on the importance of spatial and temporal scales, such as differences among plantations in different environments, of different sizes, and of different ages, as our review has identified examples where ecosystem functions vary spatially and temporally. Finally, more research is needed on developing management practices that can offset the losses of ecosystem functions. Our findings should stimulate research to address the identified gaps, and provide a foundation for more systematic research and discussion on ways to minimize the negative impacts and maximize the positive impacts of oil palm cultivation.


Assuntos
Produtos Agrícolas/fisiologia , Ecossistema , Florestas , Conservação dos Recursos Naturais , Solo
18.
Nat Commun ; 7: 13137, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725673

RESUMO

Smallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa. Between the monocultures, the higher economic performance of oil palm over rubber comes with the reliance on fertilizer inputs and with increased nutrient leaching losses. Strategies to achieve an ecological-economic balance and a sustainable management of tropical smallholder landscapes must be prioritized to avoid further environmental degradation.

19.
PLoS One ; 11(5): e0154876, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27224063

RESUMO

Rapid land-use change in the tropics causes dramatic losses in biodiversity and associated functions. In Sumatra, Indonesia, lowland rainforest has mainly been transformed by smallholders into oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) monocultures, interspersed with jungle rubber (rubber agroforests) and a few forest remnants. In two regions of the Jambi province, we conducted point counts in 32 plots of four different land-use types (lowland rainforest, jungle rubber, rubber plantation and oil palm plantation) as well as in 16 nearby homegardens, representing a small-scale, traditional agricultural system. We analysed total bird abundance and bird abundance in feeding guilds, as well as species richness per point count visit, per plot, and per land-use system, to unveil the conservation importance and functional responses of birds in the different land-use types. In total, we identified 71 species from 24 families. Across the different land-use types, abundance did not significantly differ, but both species richness per visit and per plot were reduced in plantations. Feeding guild abundances between land-use types were variable, but homegardens were dominated by omnivores and granivores, and frugivorous birds were absent from monoculture rubber and oil palm. Jungle rubber played an important role in harbouring forest bird species and frugivores. Homegardens turned out to be of minor importance for conserving birds due to their low sizes, although collectively, they are used by many bird species. Changes in functional composition with land-use conversion may affect important ecosystem functions such as biological pest control, pollination, and seed dispersal. In conclusion, maintaining forest cover, including degraded forest and jungle rubber, is of utmost importance to the conservation of functional and taxonomic bird diversity.


Assuntos
Comportamento Animal/fisiologia , Aves/fisiologia , Produção Agrícola , Floresta Úmida , Animais , Humanos , Indonésia
20.
Biol Rev Camb Philos Soc ; 91(4): 1081-1101, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26202483

RESUMO

Understanding distribution patterns and multitrophic interactions is critical for managing bat- and bird-mediated ecosystem services such as the suppression of pest and non-pest arthropods. Despite the ecological and economic importance of bats and birds in tropical forests, agroforestry systems, and agricultural systems mixed with natural forest, a systematic review of their impact is still missing. A growing number of bird and bat exclosure experiments has improved our knowledge allowing new conclusions regarding their roles in food webs and associated ecosystem services. Here, we review the distribution patterns of insectivorous birds and bats, their local and landscape drivers, and their effects on trophic cascades in tropical ecosystems. We report that for birds but not bats community composition and relative importance of functional groups changes conspicuously from forests to habitats including both agricultural areas and forests, here termed 'forest-agri' habitats, with reduced representation of insectivores in the latter. In contrast to previous theory regarding trophic cascade strength, we find that birds and bats reduce the density and biomass of arthropods in the tropics with effect sizes similar to those in temperate and boreal communities. The relative importance of birds versus bats in regulating pest abundances varies with season, geography and management. Birds and bats may even suppress tropical arthropod outbreaks, although positive effects on plant growth are not always reported. As both bats and birds are major agents of pest suppression, a better understanding of the local and landscape factors driving the variability of their impact is needed.


Assuntos
Aves/fisiologia , Quirópteros/fisiologia , Ecossistema , Florestas , Comportamento Predatório/fisiologia , Agricultura , Animais , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...